

 1

pvAccess Protocol Specification
EPICS v4 Working Group, Fourth (in progress) Public Working
Draft, 16-October-2015

This version:

pvAccess_Protocol_Specification_20151016.html
Latest version:

pvAccess_Protocol_Specification.html
Previous version:

pvAccess_Protocol_Specification_20140407.html (3rd Public Working Draft)
Editors:

Matej Sekoranja, Cosylab
Marty Kraimer, BNL
Greg White, SLAC, PSI
Andrew Johnson, APS (Invited Expert)
Benjamin Franksen, HZB (Invited Expert)
Michael Abbott, DLS (Invited Expert)
Philip Duval, DESY (Invited Expert)

 2

Abstract

This document defines the EPICS communication protocol called "pvAccess". pvAccess
is a high-performance network communication protocol for signal monitoring and
scientific data services interconnect. It is designed to support the structured data types of
the EPICS 7 (and above) "shared memory" data exchange system called pvData, for
optimized interoperability of control system endpoints. It is a successor of EPICS
Channel Access.

The connection setup requirements and individual message constructs of pvAccess are
described. It is intended that sufficient detail is given for a reader to create an
interoperable pvAccess implementation. The protocol and a reference implementation
have been created by the EPICS Version 4 Working Group.

EPICS is a computer platform for building the control systems of large scientific
instruments. For more information about EPICS, please refer to the home page of the
Experimental Physics and Industrial Control System.

 3

Status of this Document

This is the 16 October 2015 version of the pvAccess Protocol Specification. This version
constitutes the first publication of the Third Public Working Draft. The Third Public
Working Draft includes in particular support for unsigned integer, unions, and material
and revisions from the Invited Experts above. The Public Working Drafts are intended for
the EPICS community to review and comment. Resulting comments will drive
subsequent revisions of the specification and the EPICS Version 4 Working Group's
reference implementation.

Missing aspects of this specification are described in the last section at the end of this
document. It is expected that the next draft will address these remaining items as a Last
Call draft, and be followed by publication of the specification.

The present implementation of pvAccess largely reflects the specification as written here.
Another document will soon be written to track the status of the reference
implementation with respect to the specification, showing what has yet to be
implemented.

The terms MUST, MUST NOT, SHOULD, SHOULD NOT, REQUIRED, and MAY
when highlighted (through style sheets, and in uppercase in the source) are used in
accordance with RFC 2119 [RFC2119]. The term NOT REQUIRED (not defined in RFC
2119) indicates exemption.

In general the text in this document is intended to be "normative", which is to say it
constitutes a formal specification of protocol itself. As such that text is concise,
algorithmic, and describes the protocol systematically. Such text is in the default font of
the document. The functional consequences of the specification so described, although
not normative, may be important. Such non-normative text is in italics.

 4

Table of Contents

pvAccess	Protocol	Specification	...	1	
Abstract	..	2	
Status	of	this	Document	..	3	
Table	of	Contents	..	4	
Overview	..	5	
Data	Encoding	..	7	
Sizes	...	7	
User	Data	...	8	
Meta	Data	...	10	

Connection	Management	...	19	
Channel	Life-cycle	...	21	
Channel	Request	Life-cycle	...	23	
Flow	Control	..	25	
Flow	Control	Example	...	25	

Channel	Discovery	..	27	
Communication	Example	...	28	
Protocol	Messages	..	28	
Message	Header	...	29	

Application	Messages	..	31	
Beacon	(0x00)	...	31	
Connection	validation	(0x01)	...	33	
Echo	(0x02)	..	35	
Search	request	(0x03)	...	35	
Search	response	(0x04)	...	36	
Create	channel	(0x07)	...	37	
Destroy	channel	(0x08)	...	38	
Channel	get	(0x0A)	...	39	
Channel	put	(0x0B)	...	40	
Channel	put-get	(0x0C)	...	42	
Channel	monitor	(0x0D)	...	45	
Channel	array	(0x0E)	..	47	
Destroy	request	(0xF)	..	50	
Channel	process	(0x10)	...	51	
Get	channel	type	introspection	data	(0x11)	..	52	
Message	(0x12)	...	53	
Channel	RPC	(0x14)	..	53	
Cancel	request	(0x15)	..	55	

Control	Messages	..	55	
Mark	Total	Byte	Sent	(0x00)	..	56	
Acknowledge	Total	Bytes	Received	(0x01)	...	56	
Set	byte	order	(0x02)	...	56	
Echo	request	(0x03)	...	57	
Echo	response	(0x04)	...	57	

Future	Protocol	Changes/Updates	..	58	
Missing	Aspects	..	59	
Bibliography	..	60	

 5

Overview

pvAccess is a high-performance network communication protocol. It is primarily
designed for efficient signal monitoring and the data requirements of a service oriented
architecture.

pvAccess is a successor of EPICS Channel Access bib:caref. It is the standard protocol of
EPICS Version 4 (V4), EPICS 7 and above when both endpoints of a channel are EPICS
V4 agents. pvAccess can also connect to EPICS V3 IOC Process Databases using the
EPICS 7 QSRV module.

TCP/IP is used for data transmission. UDP/IP is normally used for discovery, although
discovery over TCP/IP is also allowed. The discovery mechanism allows the use of other
implementations (e.g. UDP/IP for data transmission). The protocol itself supports IPv6,
i.e. all addresses are IPv6 encoded.

Port numbers 5075 (tcp connection port, accepted by IANA) and 5076 (udp broadcast
port) are used by default. These default connection ports SHOULD be used if free,
otherwise a dynamically allocated port SHOULD be used as a fallback. pvAccess
implementations SHOULD allow alternative default connection ports to be configured.

To support multiple local sockets at port 5076 to able all to receive unicast messages over
the UDP a multicast group on local network interface at address 224.0.0.128, port 5076,
is used. Any UDP message flagged as unicast received at port 5076 MUST be forwarded
to the multicast group with unicast flag cleared.

pvAccess was designed to support pvData bib:pvdatarefcpp, bib:pvdatarefjava. pvData is
the control data interface of EPICS V4 endpoints, such as user agent software and EPICS
V4 IOCs. Together with pvAccess, they support essentially a client-server shared
memory system optimized for efficiency (optimal zero-copy etc) and control (PV
locking, alarms etc). The protocol aims to send the minimum number of bits necessary to
inform peers of changes in endpoint data values subject to performance considerations.
That is, it combines CPU and wire data size considerations to optimize overall control
network throughput. pvAccess supports segmented messages and thus allows the sending
of large amounts of data using optimal buffer sizing. The maximum message size is not
limited with respect to the send or receive buffer sizes. In practice, this means there is no
need for a pvAccess equivalent of Channel Access' EPICS_CA_MAX_ARRAY_BYTES.

The pvAccess protocol definition consists of three major parts:

 6

• A set of data encoding rules that determine how the various data types are
encoded and deserialized

• A set of rules that determine how client and server agree on a particular encoding
• A number of message types, that define the interchange between endpoints,

together with rules which specify what message is to be sent under what
circumstances.

 7

Data Encoding

The goals of pvAccess data encoding are simplicity and efficiency. In keeping with these
goals, the encoding does not align primitive types on word boundaries and therefore
eliminates the wasted space and additional complexity that alignment requires. pvAccess
data encoding simply produces a stream of contiguous bytes; in general message data
does not contain padding bytes and an implementation MUST NOT try to align data on
word boundaries.

For connection-oriented communication (TCP/IP), the server MUST notify the client
what byte order to use. Each message contains an endianness flag in order to allow all the
intermediates to forward data without requiring it to be unmarshaled (so that the
intermediates can forward requests by simply copying blocks of binary data) and in order
not to require a specific byte order for connection-less protocols (UDP/IP).

For clarity, this document separates user data (consisting of basic types, string, arrays,
structures) from meta data, which exists only at the protocol level (Status, BitSet). Meta
data can be of user data type, but not the other way around.

Sizes

Many of the types involved in the data encoding, as well as several protocol message
components, have an associated size (or "count"). Size values MUST always be a non-
negative integer and encoded as follows:

1. If the number of elements is less than 255, the size MUST be encoded as a single
byte containing an unsigned 8-bit integer indicating the number of elements

2. If the number of elements is less than 2^31-1, then the size MUST be encoded as
an unsigned 8-bit integer with value 255, followed by a positive signed 32-bit
integer indicating the number of elements

3. If the number of elements is greater than or equal to 2^31-1, then the size MUST
be encoded as an unsigned 8-bit integer with value 255, followed by a positive
signed 32-bit integer with value 2^31-1, followed by a positive signed 64-bit
integer indicating the number of elements. This implies a maximum size of 2^63-
1.

Using this encoding to indicate size is significantly cheaper than always using a 32-bit
(or even 64-bit) integer to store the size. This is especially true when marshalling
sequences of short strings; counts of up to 254 require only a single byte instead of four.
This comes at the expense of counts greater than 254, which require five bytes instead of
four. However, for sequences or strings of length greater than 254, the extra byte is
insignificant.

 8

User Data

Basic Types

The basic types MUST be encoded as shown in the Table 1. Signed integer types (byte,
short, int, long) MUST be represented as two’s complement numbers. Floating point
types (float, double) MUST use the IEEE-754 standard formats bib:ieee754wiki.

Type Encoding

boolean A single byte with value non-zero value for true, zero for false.

byte Signed 8-bit integer.
ubyte Unsigned 8-bit integer.
short Signed 16-bit integer.
ushort Unsigned 16-bit integer.
int Signed 32-bit integer.
uint Unsigned 32-bit integer.
long Signed 64-bit integer.
ulong Unsigned 64-bit integer.
float 32-bit float (IEEE-754 single-precision float).
double 64-bit float (IEEE-754 double-precision float).

Encoding for basic types.

Note on boolean encoding: a receiver MUST NOT assume that a boolean value of true is
represented by any special non-zero number, nor that the same sender consistently uses
the same number.

Arrays

Variable-size Arrays

Variable-size arrays MUST be encoded as a size representing the number of elements in
the array, followed by the elements encoded as specified for their type (as specified in
these sections).

Bounded-size Arrays

Bounded-size arrays MUST be encoded as a size representing the number of elements in
the array, followed by the elements encoded as specified for their type (as specified in
these sections). The size MUST be less then or equal to the array's declared bound.

 9

Fixed-size Arrays

Fixed-size arrays MUST be encoded as elements encoded as specified for their type (as
specified in these sections). The number of elements encoded MUST equal to the array's
fixed size.

Strings

Strings are encoded as arrays of bytes. The actual content (the bytes in the array) MUST
be a valid UTF-8 encoded string.

Particularly, this means that strings MUST be encoded as a size, followed by the string
contents in a UTF-8 format as bytes. Size gives the number of bytes that follow it and not
the number of UTF-8 characters. UTF-8 multi-byte characters MUST NOT be broken. An
empty string MUST be encoded with a size of zero.

Implementations that internally use a zero byte or a zero character to indicate end-of-
string SHOULD NOT include a terminating zero byte in the pvAccess string encoding.
'null' strings are not supported.

On the wire, pvAccess MUST transmit all strings as Unicode strings in UTF-8. Non-C++
bindings of the implementations SHOULD use strings in their language-native Unicode
representation and convert automatically to and from UTF-8 for transmission, so
applications can transparently use characters from non-English alphabets. However, for
C++, how strings are represented inside a process depends on the platform as well as
the mapping that is chosen for a particular string. The default mapping to use is
std::string.

Bounded Strings

Same as strings, just that size MUST be less than or equal to the string's bound.

Structures

Structures MUST be encoded by appending the data of all comprising fields in the order
in which the fields have been defined. A structure can contain a structure and an union
(see below) for its field.

Unions

Unions MUST be encoded as a selector value (encoded as a size), followed by the
selected union member data. The selector chooses one member of a union as specified in
the union introspection data, so must be a value in the range 0..N-1 where N is the
number of union members. A union can contain a structure and a union for its field.

 10

Variant Unions

Variant Unions are open ended union type, also known as any type. Variant Unions
MUST be encoded as a introspection data (Field) description of the encoded value,
followed by the encoded value itself.

Encoding Example

Given the following structure:

structure
 byte[] value [1,2,3]
 byte<16> boundedSizeArray [4,5,6,7,8]
 byte[4] fixedSizeArray [9,10,11,12]
 structure timeStamp
 long secondsPastEpoch 0x1122334455667788
 int nanoSeconds 0xAABBCCDD
 int userTag 0xEEEEEEEE
 structure alarm
 int severity 0x11111111
 int status 0x22222222
 string message Allo, Allo!
 union valueUnion
 int 0x33333333
 any variantUnion
 string String inside variant union.

The above would be serialized as illustrated below (when using big-endian byte order,
valueUnion selector with value 1 is selected):

Hexdump [Serialized structure] size = 85
03 01 02 03 05 04 05 06 07 08 09 0A 0B 0C 11 22 "
33 44 55 66 77 88 AA BB CC DD EE EE EE EE 11 11 3DUf w...
11 11 22 22 22 22 0B 41 6C 6C 6F 2C 20 41 6C 6C .."" "".A llo, All
6F 21 01 33 33 33 33 60 1C 53 74 72 69 6E 67 20 o!.3 333` .Str ing
69 6E 73 69 64 65 20 76 61 72 69 61 6E 74 20 75 insi de v aria nt u
6E 69 6F 6E 2E nion .

Meta Data

BitSets

BitSet is a data type that represents a finite sequence of bits.

BitSet is encoded as a byte array. Bits are serialized in groups of eight in ascending order
(LSB to MSB). Serialization is size optimized to send only the least possible number of
bytes that encode all the bits in the set.

 11

Examples of BitSet serialization:

Hexdump [{}] size = 1
00 .

Hexdump [{0}] size = 2
01 01 ..

Hexdump [{1}] size = 2
01 02 ..

Hexdump [{7}] size = 2
01 80 ..

Hexdump [{8}] size = 3
02 00 01 ...

Hexdump [{15}] size = 3
02 00 80 ...

Hexdump [{55}] size = 8
07 00 00 00 00 00 00 80

Hexdump [{56}] size = 9
08 00 00 00 00 00 00 00 01

Hexdump [{63}] size = 9
08 00 00 00 00 00 00 00 80

Hexdump [{64}] size = 10
09 00 00 00 00 00 00 00 00 01

Hexdump [{65}] size = 10
09 00 00 00 00 00 00 00 00 02

Hexdump [{0, 1, 2, 4}] size = 2
01 17 ..

Hexdump [{0, 1, 2, 4, 8}] size = 3
02 17 01 ...

Hexdump [{8, 17, 24, 25, 34, 40, 42, 49, 50}] size = 8
07 00 01 02 03 04 05 06

Hexdump [{8, 17, 24, 25, 34, 40, 42, 49, 50, 56, 57, 58}] size = 9
08 00 01 02 03 04 05 06 07

Hexdump [{8, 17, 24, 25, 34, 40, 42, 49, 50, 56, 57, 58, 67}] size = 10
09 00 01 02 03 04 05 06 07 08

Hexdump [{8, 17, 24, 25, 34, 40, 42, 49, 50, 56, 57, 58, 67, 72, 75}]
size = 11
0A 00 01 02 03 04 05 06 07 08 09

 12

Hexdump [{8, 17, 24, 25, 34, 40, 42, 49, 50, 56, 57, 58, 67, 72, 75,
81, 83}] size = 12
0B 00 01 02 03 04 05 06 07 08 09 0A

Partial Structure Serialization

Each structure can (depending on message definition) have a BitSet instance defining
what subset of that structure's fields have been serialized. This allows partial serialization
of structures. That is, serializing only fields that have changed rather than the entire
structure. Each node of a structure corresponds to one bit; if a bit is set then its
corresponding field has been serialized, otherwise not. BitSet does not apply to array
elements.

This example shows how bits of a BitSet are assigned to the fields of a structure:

bit# field
0 structure
1 structure timeStamp
2 long secondsPastEpoch
3 int nanoSeconds
4 int userTag
5 structure[] value
 structure org.epics.ioc.test.testStructure
 double value
 structure location
 double x
 double y
 structure org.epics.ioc.test.testStructure
 double value
 structure location
 double x
 double y
6 string factoryRPC
7 structure arguments
8 int size

The structure above requires a BitSet that contains 9 bits.
If the bit corresponding to a structure node is set, then all the fields of that node MUST
be serialized.

Status

pvAccess defines a structure to inform endpoints about completion status. It is nominally
defined as:

struct Status {
 byte type; // enum { OK = 0, WARNING = 1, ERROR = 2, FATAL = 3
}
 string message;

 13

 string callTree; // optional (provides more context data about
the error), can be empty
};

In practice, since the majority of Status instances would be OK with no message and no
callTree, a special definition of Status SHOULD be used in the common case that all
three of these conditions are met; if Status is OK and no message and no callTree would
be sent, then the special type value of -1 MAY be used, and in this case the string fields
are omitted:

struct StatusOK {
 byte type = -1;
};

Examples of Status serialization:

Hexdump [Status OK] size = 1
FF .

Hexdump [WARNING, "Low memory", ""] size = 13
01 0A 4C 6F 77 20 6D 65 6D 6F 72 79 00 ..Lo w me mory .

Hexdump [ERROR, "Failed to get, due to unexpected exception", (call
tree)] size = 264
02 2A 46 61 69 6C 65 64 20 74 6F 20 67 65 74 2C .*Fa iled to get,
20 64 75 65 20 74 6F 20 75 6E 65 78 70 65 63 74 due to unex pect
65 64 20 65 78 63 65 70 74 69 6F 6E DB 6A 61 76 ed e xcep tion .jav
61 2E 6C 61 6E 67 2E 52 75 6E 74 69 6D 65 45 78 a.la ng.R unti meEx
63 65 70 74 69 6F 6E 0A 09 61 74 20 6F 72 67 2E cept ion. .at org.
65 70 69 63 73 2E 63 61 2E 63 6C 69 65 6E 74 2E epic s.ca .cli ent.
65 78 61 6D 70 6C 65 2E 53 65 72 69 61 6C 69 7A exam ple. Seri aliz
61 74 69 6F 6E 45 78 61 6D 70 6C 65 73 2E 73 74 atio nExa mple s.st
61 74 75 73 45 78 61 6D 70 6C 65 73 28 53 65 72 atus Exam ples (Ser
69 61 6C 69 7A 61 74 69 6F 6E 45 78 61 6D 70 6C iali zati onEx ampl
65 73 2E 6A 61 76 61 3A 31 31 38 29 0A 09 61 74 es.j ava: 118) ..at
20 6F 72 67 2E 65 70 69 63 73 2E 63 61 2E 63 6C org .epi cs.c a.cl
69 65 6E 74 2E 65 78 61 6D 70 6C 65 2E 53 65 72 ient .exa mple .Ser
69 61 6C 69 7A 61 74 69 6F 6E 45 78 61 6D 70 6C iali zati onEx ampl
65 73 2E 6D 61 69 6E 28 53 65 72 69 61 6C 69 7A es.m ain(Seri aliz
61 74 69 6F 6E 45 78 61 6D 70 6C 65 73 2E 6A 61 atio nExa mple s.ja
76 61 3A 31 32 36 29 0A va:1 26).

Introspection Data

Introspection data describes the type of a user data item. It is not itself user data, but
rather meta data. Introspection data appears in one of four forms: no introspection data
(NULL_TYPE_CODE), a full type description (FULL_TYPE_CODE), a type identifier
(ONLY_ID_TYPE_CODE), both (FULL_WITH_ID_TYPE_CODE), according to the
table "Encoding of Introspection Data".

 14

The sender MUST send introspection data, but is free to chose one of the above methods.
Sending FULL_WITH_ID_TYPE_CODE defines the type identifier for subsequent sends
using ONLY_ID_TYPE_CODE. Therefore, before sending ONLY_ID_TYPE_CODE,
the sender MUST have previously sent at least one FULL_WITH_ID_TYPE_CODE with
the same type identifier to the same receiver.

Since user data types can be arbitrarily complex, introspection data SHOULD be sent
only once per type and receiver combination. The mapping of dynamically assigned type
identifier (ID) to introspection data MUST be cached on the receiver side, and SHOULD
be cached and re-used on the sender side. ID MUST be encoded as short and MUST be
valid only within one connection. Moreover, IDs MUST be assigned only by the sender.
The receiver MUST keep track of the IDs and use them to identify deserializations. Since
communication is full-duplex this implies there MUST be two introspection registries per
connection. The sender MAY override a previously assigned ID by simply assigning the
ID to a new introspection data instance. The introspection registry size MUST be
negotiated when each connection is established.

Field
Encoding Name Description

0xFF NULL_TYPE_CODE No introspection data (also implies no
data).

0xFE + ID ONLY_ID_TYPE_CODE

Serialization contains only an ID (that
was assigned by one of the previous
FULL_WITH_ID_TYPE_CODE or
FULL_TAGGED_ID_TYPE_CODE
descriptions).

0xFD + ID
+ FieldDesc FULL_WITH_ID_TYPE_CODE

Serialization contains an ID (that can
be used later, if cached) and full
interface description. Any existing
definition with the same ID is
overriden.

0xFC + ID
+ tag +
FieldDesc

FULL_TAGGED_ID_TYPE_CODE

Serialization contains an ID (that can
be used later, if cached), tag (of integer
type) and full interface description.
Any existing definition with the same
ID is overriden. A tag must guarantee
that the same (ID, FieldDesc) pair has
the same tag and any previous
definition with the same ID and
different FieldDesc has a different tag.
This identifies whether the definition
with given ID overrides already
existing one and allow receivers to skip
deserialization of FieldDesc, if tags

 15

match. SHOULD be used in non-
reliable transport systems only.

0xFB -
0xE0 RESERVED Reserved for future usage, MUST NOT

be used.
FieldDesc
(0xDF -
0x00)

FULL_TYPE_CODE Serialization contains only full
interface description.

Encoding of Introspection Data (called Field for future reference).

Each instance of a Field introspection description (FieldDesc) MUST be encoded as a
byte that consists of 2 nibbles (4-bits). The upper nibble (Most Significant Bits, MSBs) is
used for the type selector and flags. The lower nibble (bits 7-5) is type dependent and
used for size encoding.

bit Value Description

7-5

111 reserved (MUST never be used)
110

reserved (MUST not be used)
101

100 complex
011 string
010 floating-point
001 integer
000 boolean

3-4

11 fixed-size array flag
10 bounded-size array flag
01 variable-size array flag
00 scalar flag

2-0 type (bits 7-5) depended
Type Encoding.

bit Value Type Name

2
1 unsigned flag
0 signed flag

1-0

11 long
10 int
01 short
00 byte

Integer Type Size Encoding (type = '0b001').

 16

bit Value Type Name IEEE 754-2008 Name

2-0

111

reserved 110

101

100 reserved binary128 (Quadruple)
011 double binary64 (Double)
010 float binary32 (Single)
001 reserved binary16 (Half)
000 reserved

Floating-Point Size Encoding (type = '0b010').

bit Value Type Name

2-0

111

reserved 110

101

100

011 bounded string
010 variant union
001 union
000 structure

Complex Type Encoding (type = '0b100').

 17

FieldDesc Encoding.

For all other types, bits 2-0 MUST be '0b0000'.

Structure, union, and bounded string (and all their arrays) REQUIRE more description. A
structure REQUIRES its identification string and a named array of Fields - size followed
by one or more (field name, FieldDesc) pairs. Arrays of structures/unions REQUIRE an
introspection data of a structure/union defining an array element type.

Example #1

Given the following structure, as may be expressed by a pvData Structure:

timeStamp_t
 long secondsPastEpoch
 int nanoSeconds
 int userTag

The introspection description of the above structure is be encoded by pvAccess as the
following:

Hexdump [Serialized structure IF] size = 57
FD 00 01 80 0B 74 69 6D 65 53 74 61 6D 70 5F 74 tim eSta mp_t
03 10 73 65 63 6F 6E 64 73 50 61 73 74 45 70 6F ..se cond sPas tEpo
63 68 23 0B 6E 61 6E 6F 53 65 63 6F 6E 64 73 22 ch#. nano Seco nds"
07 75 73 65 72 54 61 67 22 .use rTag "

Example #2

FieldDesc Encoding Description
0bxxx00xxx Scalar.

0bxxx01xxx Variable-size array of
scalars.

0bxxx10xxx + bound (encoded as size) Bounded-size array of
scalars.

0bxxx11xxx + fixed size (encoded as size) Fixed-size array of
scalars.

0b10000000 + identification string + (field name, FieldDesc)[] Structure.
0b10001000 + structure FieldDesc Array of structures.
0b10000001 + identification string + (field name, FieldDesc)[] Union.
0b10001001 + union FieldDesc Array of unions.
0b10000010 Variant union.
0b10001010 Array of variant unions.
0b10000110 + bound (encoded as size) Bounded string.

 18

Given the following structure, as may be expressed by a pvData Structure:

exampleStructure
 byte[] value
 byte<16> boundedSizeArray
 byte[4] fixedSizeArray
 time_t timeStamp
 long secondsPastEpoch
 int nanoseconds
 int userTag
 alarm_t alarm
 int severity
 int status
 string message
 union valueUnion
 string stringValue
 int intValue
 double doubleValue
 any variantUnion

The introspection description of the above structure would be encoded by pvAccess as
the following:

Hexdump [Serialized structure IF] size = 243
FD 00 01 80 10 65 78 61 6D 70 6C 65 53 74 72 75 exa mple Stru
63 74 75 72 65 07 05 76 61 6C 75 65 28 10 62 6F ctur e..v alue (.bo
75 6E 64 65 64 53 69 7A 65 41 72 72 61 79 30 10 unde dSiz eArr ay0.
0E 66 69 78 65 64 53 69 7A 65 41 72 72 61 79 38 .fix edSi zeAr ray8
04 09 74 69 6D 65 53 74 61 6D 70 FD 00 02 80 06 ..ti meSt amp.
74 69 6D 65 5F 74 03 10 73 65 63 6F 6E 64 73 50 time _t.. seco ndsP
61 73 74 45 70 6F 63 68 23 0B 6E 61 6E 6F 73 65 astE poch #.na nose
63 6F 6E 64 73 22 07 75 73 65 72 54 61 67 22 05 cond s".u serT ag".
61 6C 61 72 6D FD 00 03 80 07 61 6C 61 72 6D 5F alar m... ..al arm_
74 03 08 73 65 76 65 72 69 74 79 22 06 73 74 61 t..s ever ity" .sta
74 75 73 22 07 6D 65 73 73 61 67 65 60 0A 76 61 tus" .mes sage `.va
6C 75 65 55 6E 69 6F 6E FD 00 04 81 00 03 0B 73 lueU nions
74 72 69 6E 67 56 61 6C 75 65 60 08 69 6E 74 56 trin gVal ue`. intV
61 6C 75 65 22 0B 64 6F 75 62 6C 65 56 61 6C 75 alue ".do uble Valu
65 43 0C 76 61 72 69 61 6E 74 55 6E 69 6F 6E FD eC.v aria ntUn ion.
00 05 82 ...

 19

Connection Management

pvAccess uses the concept of a "channel" to denote a connection to a single named
resource that resides on some server. Channels are subordinate to the TCP connection
between a client and server: a channel can only be created if a TCP connection has
already been established; likewise, if the TCP connection is terminated, then all
subordinate channels are implicitly destroyed.

Each TCP connection has associated Quality of Service (QoS) parameters. Regardless of
how many channels are handled by either client or server, each client and server pair
MUST be connected with exactly one TCP connection for each QoS parameter value.

When establishing a TCP connection, a simple handshake MUST be performed. The
client opens a TCP connection to the server and waits until the Connection Validation
message is received. The server MUST initially send a Set byte order control message to
notify the client about the byte order to be used for this TCP connection. After that the
server MUST send the Connection Validation message. If the client correctly decodes
messages it MUST respond with a Connection Validation response message. Now the
connection is verified and the client may start sending requests. The client SHOULD
keep the connection established until the last active channel gets destroyed. However, to
optimize resource reallocation it MAY delay connection destruction.

Both parties MUST constantly monitor whether the connection is valid and not simply
rely on TCP mechanisms. pvAccess achieves this by sending some small amount of data
with a minimum period. If there is no send operation otherwise called within a
predetermined period of time (SHOULD be 15 seconds), an echo message MUST be
sent. In case of connection failure, TCP will report a connection loss on send. If there is
no response in a predetermined period of time, the connection SHOULD be marked as
unresponsive. An echo message MUST be periodically sent until a response is received
or the connection is reported to be lost. If an echo response is received and transport is
marked as unresponsive, then transport SHOUD be reported to be responsive.

 20

Figure 1 Connection State Diagram.

When connection is terminated all related resources MUST be freed. On the server side
all channels including their requests MUST be destroyed (this includes all
serverChannelIDs). On the client side all channels and their requests MUST be put to
disconnected state and searching for channels initiated. clientChannelIDs and requestIDs
SHOULD be retained until channel or request are destroyed on client side. Once IDs are
freed they MAY be recycled - used for other channels/requests in the future.

When disconnected client channels are found on the network and connection is re-
established, channels are put back to connected state and all their requests re-initialized;
in addition, monitors are re-started.

 21

Channel Life-cycle

Figure 2 Channel State Diagram.

When a channel is instantiated by a client application, its state MUST be set to a
NEVER_CONNECTED state. This indicates that the channel is currently being
connected for the first time. The connection proccess within the client MUST repetedly
attempt to find a server hosting the channel by broadcasting or multicasting channel
search requests. When a server response is received, the client MUST connect to the
server responding to the search request using the protocol and address data from the
search request response. If a connection has already been established by the client, it
MUST be reused. A client API MAY also allow a user-specified server address; in this
case, the searching process would be bypassed and the specified server address data used
directly.

 22

When a connection is established and verified, a channel create request message MUST
be sent by the server. When the client receives a channel create response message with a
success status, it MUST set the channel to the CONNECTED state.

A channel MUST be in a CONNECTED state to be able to accept channel related
requests.

When the connection is lost, the channel state MUST be set to DISCONNECTED. In this
state, clients MUST start the connection process as described above. On reconnect, the
channel's state MUST be set back to CONNECTED.

A channel MAY be destroyed any time (in any state) and then its state MUST be set to
DESTROYED. Once the channel is destroyed, it MUST NOT be used anymore.

 23

Channel Request Life-cycle

Figure 3. Channel Request State Diagram.

Channel requests (get, put, get-put, RPC, process) have a state. When instantiated, they
MUST be set to the INIT state. A specific per request initialization message MUST be
sent to the server. The request MUST NOT be used until a successful initialization
response is received from the server and put to the READY state. If initialization fails,
the client MUST be notified about the failure and the request put to the DESTROYED
state.

Actual actions, e.g. get, MAY only be invoked when a request is in the READY state.
When one action is in progress, the request is put into the REQUEST_IN_PROGRESS
state and set back to the READY state when the action is completed. This implies that
actions MUST NOT be run in parallel.

When a connection is lost, a request MUST be put into the DISCONNECTED state and
automatically reinitialized when the connection is reestablished (as if the request were
newly instantiated).

 24

A pending request MAY be canceled. Actual cancellation MAY be ignored, however
completion of the request MUST be always reported via request completion callback
mechanism.

A request MAY be destroyed at any time (in any state) and then its state MUST be set to
DESTROYED. Once the request is destroyed, it MUST NOT be used anymore.

 25

Flow Control

This section is not intended to be normative. It is given only to help developers write
agents that implement pvAccess optimally with respect to monitoring. This section does
not describe the protocol itself.

A pvAccess implementation SHOULD implement flow control such that each endpoint
should try to send as much monitoring data as it can subject to an upper limit calculated
with respect to the amount of the other party's free receive buffer size. Were this limit to
be reached, monitors would start piling up in the monitors' circular buffer queues.

Usually flow control algorithms wait for congestion to occur before they are triggered.
They are causal. However, due to the isolated nature of TCP connection - there are
always only two parties involved - it is possible to predict congestions using the following
algorithm:

• Both parties exchange their receive socket and local buffer sizes
• Periodically, i.e. every N bytes, they send a control message marking the total

number of bytes sent to the other party
• When the other party receives the control message it responds with a

complementary control message indicating the received marker value. This
acknowledges the reception of total bytes sent

• The difference between the total bytes sent and the last acknowledged marker
received gives an indication of how full the other party's receive buffers are. This
number should never exceed the total sum of receive buffer sizes.

Flow control is needed only to optimize subscription messages back to the client (i.e.
monitors). For other messages TCP flow control is sufficient.

A pvAccess implementation SHOULD implement flow control such that each endpoint
should try to send as much monitoring data as it can subject to an upper limit calculated
with respect to the amount of the other party's free receive buffer size. Were this limit to
be reached, monitors would start piling up in the monitors' circular buffer queues.

Flow Control Example

The intention of flow control is to avoid having the following behavior, which typically
results from pure TCP flow control:

• Let's assume the client's Rx buffers are full.
• The server sends monitors until TCP detects the client's Rx buffer is full.

 26

• After some time the client's Rx buffer is immediately emptied. This is a
consequence of the fact that bulk reads are made from the socket rather than
reading message by message (because OS calls are expensive).

• Server starts sending monitors until all the buffers are full (the server will fill all
the buffers before the client actually processed received monitors!).

Such situations as described above would result in monitors like the following (identified
by their sequential number):

0 1 2 3 4 (buffers full) 7 8 9 10 11 12 (buffers full) 22 23 24 25 26
27 28 (buffers full)

Flow control can make this better:

0 1 2 3 4 (buffers full) 7 8 (buffers still full, but for less time
since the server would send only as much as the client can handle) 10
11 (...) 14 15 (...) 18 19

The result is more fluid and up-to-date arrival of monitors, which overcomes the
combined problems of slow processing and large buffers.

Requiring flow control (in addition to already existing monitor queues) would add
complexity to the protocol's implementation. It needs to be decided whether the above
flow control should be specified as part of the normative specification, or only suggested
non-normatively. At present, it is only suggested.

 27

Channel Discovery

pvAccess uses a broadcast/multicast channel discovery mechanism using UDP; search
messages are usually sent to broadcast addresses and servers hosting searched channels
respond with a message containing their server address and port. In addition pvAccess
transparently supports multicast, if an address is a multicast address the implementation
SHOULD transparently handle it. That is, it should join the multicast group in order to
receive multicast messages.

Possible future addition: UDP congestion control should be added to the specification to
prevent the possibility of poor implementations flooding a network with UDP search
messages. Currently a simple and robust algorithm is used in the reference
implementation. The optimality of the algorithm should to be verified and added to this
specification.

 28

Communication Example

The following table illustrates messages sent between a client and a server where the
client issues a get request on a channel.

Server Client
 <---- searchRequest (UDP broadcast/multicast)
searchResponse (UDP unicast) ---->
TCP/IP connection established
setByteOrderControlMessage ---->
connectionValidationRequest ---->
 <---- connectionValidationResponse
 <---- createChannelRequest
createChannelResponse ---->
 <---- channelGetRequestInit
channelGetResponseInit ---->
 <---- channelGetRequest
channelGetResponse ---->
 <---- . . .
. . . ---->
 <---- destroyRequest
 <---- channelDestroyRequest
channelDestroyResponse ---->

Communication Example.

 29

Protocol Messages

The pvAccess protocol uses two protocol message types:

• Control messages. These include flow control and have no payload
• Application messages. These are the requests and their responses.

Each message consists of a message header and, optionally a message payload that
immediately follows the header. Messages MUST BE aligned on a 64-bit boundary.

Every implementation of the protocol which purports to support this specification version
of the protocol, MUST also support all prior specification versions of the protocol. Every
implementation of the protocol MUST clearly indicate the most recent specification
version to which it is conformant, using the version URLs above.

Message Header

Each protocol message has a fixed 8-byte header that MUST be encoded as if it were
expressed by the following structure:

struct pvAccessHeader {
 byte magic;
 byte version;
 byte flags;
 byte messageCommand;
 int payloadSize;
};

The semantics of these message header components are given in the following table.

Member Description
magic pvAccess protocol magic code. This MUST always be 0xCA.
version Protocol version.
flags Message flags.
messageCommand Message command (i.e. create, get, put, process, etc.).
payloadSize Message payload size (non-aligned, in bytes).

pvAccess Header Members.

bit Value Description

0
0 Application message.
1 Control message.

 30

1,2,3 Unused, MUST be 0.

5,4

00 Not segmented message.
01 First messsage (of set of segmented messages).
10 Last message (of set of segmented messages).
11 Middle message (of set of segmented messages).

6
0 Message sent by client.
1 Message sent by server.

7
0 Little endian byte order.
1 Big endian byte order.

pvAccess Header Flags Description.

Between two segmented messages of the same set there MUST NOT be any other
application message than the segmented message of the same set. Control messages are
allowed to be in-between.

Alignment offset MUST be preserved between segmented messages, i.e. if the last sent
byte of a segmented message is misaligned by 6 bytes to the 64-bit aligned start of the
message reference point, then the next segmented message needs to insert 6 padding
bytes at the start of the next segmented message payload.

 31

Application Messages

This section describes the message payloads for application messages. Each subsection
describes a single message command (pvAccessHeader.messageCommand).

"request" means a message sent by a client, and "response" means a message sent by a
server.

In order to understand specific application messages it is helpful to be familiar with the
EPICS V4 pvAccess Programmers Reference.

Most application messages below relate to the management of process variable channels.
A process variable, or PV, is a dynamical quantity and its associated local processing
semantics, as understood by process control systems. pvAccess has been designed to
specifically integrate with process control systems, particularly EPICS V4, to provide an
efficient interconnect for systems involved in the exchange of PV related information.
Agent systems connect to a process control computer (via pvAccess) hosting PVs, by
opening a "Channel" to each PV of interest. A channel is the temporal connection
between pvAccess agents, with respect to one process variable.

All application message MUST be sent over the data transmission transport unless
explicitly specified. TCP/IP is the transport in the reference implementation. A response
message MUST be sent over the same transport as that on which the request was
received.

Beacon (0x00)

Servers MUST broadcast or multicast beacons over UDP. Beacons are be used to
announce new servers and server restarts.

struct beaconMessage {
 byte[12] guid;
 byte flags;
 byte beaconSequenceId;
 short changeCount;
 byte[16] serverAddress;
 short serverPort;
 string protocol;
 FieldDesc serverStatusIF;
 [if serverStatusIF != NULL_TYPE_CODE] PVField serverStatus;
};

Member Description
guid Server GUID (Globally Unique Identifier). MUST change every

 32

restart.
flags reserved

beaconSequenceId Beacon sequence ID (counter w/ rollover). Can be used to detect
UDP routing problems.

changeCount Count (w/ rollover) that changes every time server's list of channels
changes.

serverAddressIPv6 Server address (e.g. for IP transports IPv6 or IPv6 encoded IPv4
address).

serverPort Server port (e.g. for IP transport socket port where server is
listening).

protocol Protocol/transport name (e.g. "tcp" for standard pvAccess TCP/IP
communication).

serverStatusIF Optional server status Field description, NULL_TYPE_CODE
MUST be used indicate absence of data.

serverStatus Optional server data.
Beacon Message Members.

When a pvAccess server is started it MUST start emitting beacons. Clients MUST
monitor all beacons. A beacon received from an as yet unknown
serverAddress:serverPort MUST be interpreted as indicating that a new server has come
online. A beacon with the same serverAdddress:serverPort address as one already
received but has different globally unique ID (guid), MUST be interpreted as indicating
that the server was restarted. In both cases a client SHOULD boost searching of not yet
found channels. A client SHOUD also boost searching of not yet found channels when
changeCount changes (this indicates that the server might host new channels). A client
MAY disconnect old connections or wait until connection loss is detected (on failed Echo
message send).

Each server transport instance SHOULD emit its own beacons. For example, if a server
supports data transmission over TCP/IP and UDP/IP then these SHOULD both emit
beacons. If the instances are tightly coupled, i.e. they have the same lifecycle and share
the same channels, then only one server MAY emit beacons.

Due to the fact that UDP does not guarantee delivery, a server MUST send several
beacons to notify that it is alive (e.g. 15 beacons with 1Hz period). After a longer period
it MAY stop sending them, however it is recommended that it SHOULD continue merely
with a low rate (e.g. one beacon per minute) to report serverStatus.

Beacons SHOULD not be used to report connection-valid status.

 33

Connection validation (0x01)

A "connection validation" message MUST be the first application message sent from the
server to a client when a TCP/IP connection is established. The message indicates that the
server is ready to receive requests. The client MUST NOT send any messages on the
connection until it has received a connection validation message from the server.

The purpose of the connection validation message is two-fold:

• It informs the client of the connection and protocol details.
• It prevents the client from writing a request message to its local transport buffers

until after the server has acknowledged that it can actually process the request.
This avoids a race condition caused by the server's TCP/IP stack accepting
connections in its backlog while the server is in the process of shutting down. If
the client were to send a request in this situation, the request would be lost but the
client could not safely reissue the request because that might violate at-most-once
semantics.

The connection validation message guarantees that a server is not in the middle of
shutting down when the server's TCP/IP stack accepts an incoming connection, and so
avoids the race condition.

The connection validation request and connection validation response messages are
defined as follows:

struct connectionValidationRequest {
 int serverReceiveBufferSize;
 short serverIntrospectionRegistryMaxSize;
 string[] authNZ; // list of supported
authNZ;
};

// TODO new message code (from server) 0x09
struct connectionValidated {
 Status status;
};

// TODO new message code 0x05
struct authNZRequest {
 FieldDesc dataIF;
 [if dataIF != NULL_TYPE_CODE] PVField data;
};

struct authNZResponse {
 FieldDesc dataIF;
 [if dataIF != NULL_TYPE_CODE] PVField data;
};

// TODO new message code (from server) 0x06

 34

struct aclChange {
 int clientChannelID;
 struct {
 int requestID; // invalid ID is 0 (means for channel)
 BitSet[] rights; // get has only one bit-set (readRights),
put-get has 2 (read and write), channel has one (allowed/dissallowed
request)
 } changes[];
};

struct connectionValidationResponse {
 int clientReceiveBufferSize;
 short clientIntrospectionRegistryMaxSize;
 short connectionQos;
 string authNZ; // selected authNZ plugin;
};

Member Description
serverReceiveBufferSize Server receive buffer size in bytes.
serverReceiveSocketBufferSize Server socket buffer size in bytes.

serverIntrospectionRegistryMaxSize Maximum number of introspection registry
entries server is able to handle.

Connection Validation Request Message Members.

Member Description

clientReceiveBufferSize Client receive buffer size in bytes.
clientReceiveSocketBufferSize Client socket buffer size in bytes.

clientIntrospectionRegistryMaxSize Maximum number of introspection registry
entries client is able to handle.

connectionQoS Connection QoS parameters.
Connection Validation Response Message Members.

bit Description
0-6 Priority level [0-100].
7 Unused, MUST be 0.
8 Low-latency priority.
9 Throughput priority.
10 Enable compression.
11-15 Unused, MUST be 0.

Connection QoS Parameters Description.

 35

Each Quality of Service (QoS) parameter value REQUIRES a separate TCP/IP
connection. If the Low-latency priority bit is set, this indicates clients should attempt to
minimize latency if they have the capacity to do so. If the Throughput priority bit is set,
this indicates a client similarly should attempt to maximize throughput. How this is
achieved is implementation defined. The Compression bit enables compression for the
connection . A matter for a future version of the specification should be whether a
streaming mode algorithm should be specified.

Echo (0x02)

An Echo diagnostic message is usually sent to check if TCP/IP connection is still valid.

struct echoRequest {
 byte[] somePayload;
};

struct echoResponse {
 byte[] samePayloadAsInRequest;
};

Member Description
somePayload Arbitrary payload content, can be empty.

Echo request message members.

Member Description
samePayloadAsInRequest Same paylaod as in request message.

Echo response message members.

Search request (0x03)

A channel "search request" message SHOULD be sent over UDP/IP, however UDP
congestion control SHOULD be implemented in this case. A server MUST accept this
message also over TCP/IP.

struct searchRequest {
 int searchSequenceID;
 byte flags; // 0-bit for replyRequired, 7-th bit for "sent as
unicast" (1)/"sent as broadcast/multicast" (0)

 byte[3] reserved;

 36

 // if not provided (or zero), the same transport is used for
responses
 // needs to be set when local broadcast (multicast on loop
interface) is done
 byte[16] responseAddress; // e.g. IPv6 address in case of IP based
transport, UDP
 short responsePort; // e.g. socket port in case of IP based
transport

 string[] protocols;

 struct {
 int searchInstanceID;
 string channelName;
 } channels[];
};

Member Description

searchSequenceID Search sequence ID (counter w/ rollover), can be used by congestion
control algorithms.

replyRequired 0x01 to force server to respond even if it does not host channel(s),
0x00 otherwise.

protocol A set of allowed protocols to respond. Unrestricted if array is empty.

searchInstanceID ID to be used to associate response with the following channel
name.

channelName Non-empty channel name, maximum length of 500 characters.
Search request message members.

The response to a search request is defined as messageCommand 0x04, see below.

Search response (0x04)

A "search response" message MUST be sent as the response to a search request (0x03)
message.

struct searchResponse {
 byte[12] guid;
 int searchSequenceID;
 byte[16] serverAddress; // e.g. IPv6 address in case of IP based
transport
 short serverPort; // e.g. socket port in case of IP based
transport
 string protocol;
 boolean found;
 int[] searchInstanceIDs;
};

Member Description

 37

searchSequenceID Search sequence ID, same as specified in search request.

found Flag indicating whether response contains IDs of found or not
found channels.

serverAddressIPv6 Server address (e.g. in case of IP transport IP or IPv6 encoded IPv4
address).

serverPort Server port (e.g. in case of IP trasnport socket port where server is
listening).

protocol Protocol name, "tcp" for standard pvAccess TCP/IP
communication.

searchInstanceIDs IDs, associated with names in the request, relevant to this response.
Search response message members.

A client MUST examine the protocol member field to verify it supports the given
exchange protocol; if not, the search response is ignored.

Create channel (0x07)

A channel provides a communication path between a client and a server hosted "process
variable."

Each channel instance MUST be bound only to one connection.

struct createChannelRequest {
 struct {
 int clientChannelID;
 string channelName;
 } channels[];
};

struct createChannelResponse {
 int clientChannelID;
 int serverChannelID;
 Status status;
 [if status.type == OK | WARNING] short accessRights;
};

Member Description
clientChannelID Client generated channel ID.

channelName Name of the channel to be created, non-empty and maximum length
of 500 characters.

Create channel request message members.

Member Description
clientChannelID Client generated channel ID, same as in request

 38

serverChannelID Server generated channel ID.
status Completion status.
accessRights Access rights (TBD).

Create channel response (per channel) message members.

NOTE: A server MUST store the clientChannelID and respond with its value in a
destroyChannelMessage when a channel destroy request is requested, see below. A client
uses the serverChannelID value for all subsequent requests on the channel. Agents
SHOULD NOT make any assumptions about how given IDs are generated. IDs MUST
be unique within a connection and MAY be recycled after a channel is disconnected.

Destroy channel (0x08)

A "destroy channel" message is sent to a server to destroy a channel that was previously
created (with a create channel message).

struct destroyChannelRequest {
 int clientChannelID;
 int serverChannelID;
};

struct destroyChannelResponse {
 int clientChannelID;
 int serverChannelID;
};

Member Description
clientChannelID Client generated channel ID, same as in create request.
serverChannelID Server generated channel ID, same as in create response.

Destroy channel request.

Member Description
clientChannelID Client generated channel ID, same as in create request.
serverChannelID Server generated channel ID, same as in create response.
status Completion status.

Destroy channel response.

If the request (clientChannelID, serverChannelID) pair does not match, the server MUST
respond with an error status. The server MAY break its response into several messages.

NOTE: A server MUST send this message to a client to notify the client about server-side
initiated channel destruction. Subsequently, a client MUST mark such channels as

 39

disconnected. If the client's interest in the process variable continues, it MUST start
sending search request messages for the channel.

Channel get (0x0A)

A "channel get" set of messages are used to retrieve (get) data from the channel.

struct channelGetRequestInit {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x08 for INIT;
 FieldDesc pvRequestIF;
 PVField pvRequest;
};

struct channelGetResponseInit {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] FieldDesc pvStructureIF;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Client generated request ID.
subcommand 0x08
pvRequestIF pvRequest Field description.
pvRequest pvRequest structure.

Channel get init request.

Member Description
requestID Request ID, same as in request message.
subcommand 0x08, same as in request message.
status Completion status.
pvStructureIF pvStructure (data container) Field description.

Channel get init response.

After a get request is successfully initialized, the client can issue actual get request(s).

struct channelGetRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x40 for GET; additional 0x10 mask for DESTROY;
};

 40

struct channelGetResponse {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] BitSet changedBitSet;
 [if status.type == OK | WARNING] PVField pvStructureData;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x40 for GET, additional 0x10 mask for DESTROY.

Channel get request.

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.
changedBitSet Changed BitSet for pvStructureData.
pvStructureData Data structure.

Channel get response.

NOTE: if the DESTROY mask is applied, the server MUST destroy the request after the
get response and the client MUST do the same after it receives the response.

Channel put (0x0B)

A "channel put" set of messages are used to set (put) data to the channel.

struct channelPutRequestInit {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x08;
 FieldDesc pvRequestIF;
 PVField pvRequest;
};

struct channelPutResponseInit {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] FieldDesc pvPutStructureIF;
};

 41

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Client generated request ID.
subcommand 0x08
pvRequestIF pvRequest Field description.
pvRequest pvRequest structure.

Channel put init request.

Member Description
requestID Request ID, same as in request message.
subcommand 0x08, same as in request message.
status Completion status.
pvPutStructureIF pvPutStructure (data container) Field description.

Channel put init response.

After a put request is successfully initialized, the client can issue actual put request(s) on
the channel.

struct channelPutRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x00 for PUT; 0x10 mask for DESTROY;
 BitSet toPutBitSet;
 PVField pvPutStructureData;
};

struct channelPutResponse {
 int requestID;
 byte subcommand;
 Status status;
};

Channel put request.

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x00 for PUT, additional 0x10 mask for DESTROY.
toPutBitSet To-put BitSet for pvPutStructureData.
pvPutStructureData Data to put structure.

 42

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.

Channel put response.

A "get-put" request retrieves the remote put structure. This MAY be used by user
applications to show data that was set the last time by the application.

struct channelGetPutRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x40;
};

struct channelGetPutResponse {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] PVField pvPutStructureData;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x40.

Channel get put request.

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.
pvPutStructureData Remote put data structure.

Channel get put response.

Channel put-get (0x0C)

A "channel put-get" set of messages are used to set (put) data to the channel and then
immediately retrieve data from the channel. Channels are usually "processed" or
"updated" by their host between put and get, so that the get reflects changes in the
process variable's state.

struct channelPutGetRequestInit {

 43

 int serverChannelID;
 int requestID;
 byte subcommand = 0x08;
 FieldDesc pvRequestIF;
 PVField pvRequest;
};

struct channelPutGetResponseInit {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] FieldDesc pvPutStructureIF;
 [if status.type == OK | WARNING] FieldDesc pvGetStructureIF;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.

requestID Client generated request ID.
subcommand 0x08

pvRequestIF pvRequest Field description.
pvRequest pvRequest structure.

Channel put-get init request.

Member Description

requestID Request ID, same as in request message.
subcommand 0x08, same as in request message.

status Completion status.
pvPutStructureIF pvPutStructure (data container) Field description.
pvGetStructureIF pvGetStructure (data container) Field description.

Channel put-get init response.

After a put-get request is successfully initialized, the client can issue actual put-get
request(s) on the channel.

struct channelPutGetRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x00 for PUT_GET; 0x10 mask for DESTROY;
 BitSet toPutBitSet;
 PVField pvPutStructureData;
};

struct channelPutGetResponse {

 44

 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] PVField pvGetStructureData;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x00 for PUT_GET, additional 0x01 mask for DESTROY.
toPutBitSet To-put BitSet for pvPutStructureData.
pvPutStructureData Data to put structure.

Channel put-get request.

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.
pvGetStructureData Get data structure.

Channel put-get response.

A "get-put" request retrieves the remote put structure. This MAY be used by user
applications to show data that was set the last time by the application.

struct channelGetPutRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x80;
};

struct channelGetPutResponse {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] PVField pvPutStructureData;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x80.

Channel get put request.

 45

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.
pvPutStructureData Remote put data structure.

Channel get put response.

A "get-get" request retrieves remote get structure. This MAY be used by user
applications to show data that was retrieved the last time.

struct channelGetGetRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x40;
};

struct channelGetGetResponse {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] PVField pvGetStructureData;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x40.

Channel get get request.

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.
pvGetStructureData Remote get data structure.

Channel get get response.

Channel monitor (0x0D)

The "channel monitor" set of messages are used by client agents to indicate that they
wish to be asynchronously informed of changes in the state or values of the process
variable of a channel. The subscribe mechanism is employed.

struct channelMonitorRequestInit {

 46

 int serverChannelID;
 int requestID;
 byte subcommand = 0x08; // | 0x80 pipeline support // TODO
 FieldDesc pvRequestIF;
 PVField pvRequest;
 if [subcommand & 0x80 == 0x80] int queueSize;
};

struct channelMonitorResponseInit {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] FieldDesc pvStructureIF;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Client generated request ID.
subcommand 0x08
pvRequestIF pvRequest Field description.
pvRequest pvRequest structure.

Channel monitor init request.

Member Description
requestID Request ID, same as in request message.
subcommand 0x08, same as in request message.
status Completion status.
pvStructureIF pvStructure (data container) Field description.

Channel monitor init response.

The pvRequest structure SHOULD be used to specify monitor queue size and algorithm.
How it may be used for those functions is not defined by pvAccess, and so would be
implementation defined.

After monitor request is successfully initialized, the client can issue the actual monitor
request(s).

The following messages MUST be used to start (resume) or stop (suspend) monitoring
and to destroy monitor requests (subscription):

struct channelStartMonitorRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x44;
};

 47

struct channelStopMonitorRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x04;
};

struct channelDestroyMonitorRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x10;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Client generated request ID.
subcommand 0x44 for START, 0x04 for STOP, 0x10 for DESTROY.

Channel monitor requests.

The response for monitor requests above has the following form:

struct channelMonitorResponse {
 int requestID;
 byte subcommand = 0x00;
 BitSet changedBitSet;
 PVField pvStructureData;
 BitSet overrunBitSet;
};

// TODO

struct channelMonitorReportQueueSize {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x80;
 int nfree;
};

Member Description
requestID Request ID, same as in monitor init request message.
serverChannelID Server generated channel ID, same as in create channel response.
requestID Client generated request ID.
subcommand 0x00.
changedBitSet Changed BitSet for pvStructureData.
pvStructureData Data structure.
overrunBitSet BitSet indicating overrun fields.

Channel monitor response.

 48

Channel array (0x0E)

A "channel array" set of messages are used to handle remote array values. Requests allow
a client agent to: retrieve (get) and set (put) data from/to the array, and to change the
array's length (number of valid elements in the array).

struct channelArrayRequestInit {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x08;
 FieldDesc pvRequestIF;
 PVField pvRequest;
};

struct channelArrayResponseInit {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] FieldDesc pvArrayIF;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Client generated request ID.
subcommand 0x08
pvRequestIF pvRequest Field description.
pvRequest pvRequest structure.

Channel array init request.

Member Description
requestID Request ID, same as in request message.
subcommand 0x08, same as in request message.
status Completion status.
pvArrayIF pvArray (data container) Field description.

Channel array init response.

After an array request is successfully initialized, the client can issue the actual array
request(s).

struct channelGetArrayRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x40 mask for GET; 0x10 mask for DESTROY;
 size offset;
 size count;
};

 49

struct channelGetArrayResponse {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] PVField pvArrayData;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x40 for GET, additional 0x10 mask for DESTROY.
offset Offset from the beginning of the array.

count Number of elements requested, 0 means form offset to the end of the
array.

Channel array get request.

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.
pvArrayData Data array.

Channel array get response.

struct channelPutArrayRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x00 mask for PUT; 0x10 mask for DESTROY;
 size offset;
 PVField pvArrayData;
};

struct channelPutArrayResponse {
 int requestID;
 byte subcommand;
 Status status;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x00 for PUT, additional 0x10 mask for DESTROY.
offset Offset from the beginning of the array.
pvArrayData Subarray to be put.

 50

Channel array put request.

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.

Channel array put response.

/// TODO GetLength is missing, fix the codes !!!

struct channelSetLengthRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x80 mask for SET_LENGTH; 0x10 mask for DESTROY;
 size length;
};

struct channelSetLengthResponse {
 int requestID;
 byte subcommand;
 Status status;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in init message.
subcommand 0x40 for GET, additional 0x10 mask for DESTROY.
length New length.

Channel array set length request.

Member Description
requestID Request ID, same as in request message.
subcommand Same as in request message.
status Completion status.

Channel array set length response.

Destroy request (0xF)

A "destroy request" messages is used destroy any request instance, i.e. an instance with
requestID.

// destroys any request with given requestID

 51

struct destroyRequest {
 int serverChannelID;
 int requestID;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in request init message.

Destroy request.

Channel process (0x10)

A "channel process" set of messages are used to indicate to the server that the
computation actions associated with a channel should be executed. In the language of
EPICS, this means that the channel should be "processed".

struct channelProcessRequestInit {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x08;
 FieldDesc pvRequestIF;
 [if serverStatusIF != NULL_TYPE_CODE] PVField pvRequest;
};

struct channelProcessResponseInit {
 int requestID;
 byte subcommand;
 Status status;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Client generated request ID.
subcommand 0x08
pvRequestIF Optional pvRequest Field description, NULL_TYPE_CODE is none.
pvRequest Optional pvRequest structure.

Channel process init request.

Member Description
requestID Request ID, same as in request message.
subcommand 0x08, same as in request message.
status Completion status.

Channel process init response.

 52

After a process request is successfully initialized, the client can issue the actual process
request(s).

struct channelProcessRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x00 mask for PROCESS; 0x10 mask for DESTROY;
};

struct channelProcessResponse {
 int requestID;
 byte subcommand;
 Status status;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.

requestID Request ID, same as in init message.
subcommand 0x00 for PROCESS, additional 0x10 mask for DESTROY.

Channel proces request.

Member Description
requestID Request ID, same as in request message.

subcommand Same as in request message.
status Completion status.

Channel process response.

Get channel type introspection data (0x11)

A "get channel type introspection data" message is used to retrieve a channel's type
introspection data, i.e. a description of all the channel's fields and their data types.

struct channelGetFieldRequest {
 int serverChannelID;
 int requestID;
 string subFieldName; // entire record if empty
};

struct channelGetFieldResponse {
 int requestID;
 Status status;
 [if status.type == OK | WARNING] FieldDesc subFieldIF;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.

 53

requestID Client generated request ID.
subFieldName Name of the subfield to get or entire record if empty.

Get channel introspection data request.

Member Description
requestID Request ID, same as in request message.
status Completion status.
subFieldIF Requested field introspection data.

Get channel introspection data response.

Message (0x12)

A "message" message is used by a server to provide to a client human readable text
regarding the status of a specific request. This message MUST NOT be used to report
request completion status.

struct message {
 int requestID;
 byte messageType; // info = 0, warning = 1, error = 2, fatalError =
3
 string message;
};

Member Description

requestID Request ID.

messageType Message type enum.

message Message.
Message response.

Channel RPC (0x14)

The "channel RPC" set of messages are used to provide remote procedure call (RPC)
support over pvAccess.

struct channelRPCRequestInit {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x08;
 FieldDesc pvRequestIF;
 PVField pvRequest;
};

struct channelRPCResponseInit {

 54

 int requestID;
 byte subcommand;
 Status status;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.

requestID Client generated request ID.
subcommand 0x08

pvRequestIF pvRequest Field description.
pvRequest pvRequest structure.

Channel RPC init request.

Member Description
requestID Request ID, same as in request message.

subcommand 0x08, same as in request message.
status Completion status.

Channel RPC init response.

After a RPC request is successfully initialized, the client can issue actual RPC request(s).

struct channelRPCRequest {
 int serverChannelID;
 int requestID;
 byte subcommand = 0x00 mask for RPC; 0x10 mask for DESTROY;
 FieldDesc pvStructureIF;
 PVField pvStructureData;
};

struct channelRPCResponse {
 int requestID;
 byte subcommand;
 Status status;
 [if status.type == OK | WARNING] FieldDesc pvResponseIF;
 [if status.type == OK | WARNING] PVField pvResponseData;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.

requestID Request ID, same as in init message.
subcommand 0x00 for RPC, additional 0x10 mask for DESTROY.

pvStructureIF pvStructureData Field description.
pvStructureData Argument data structure.

Channel RPC request.

 55

Member Description

requestID Request ID, same as in request message.
subcommand Same as in request message.

status Completion status.
pvResponseIF pvResponseDataField description.

pvResponseData Response data structure.

Channel RPC response.

Cancel request (0x15)

A "cancel request" messages is used cancel any pending request, i.e. an instance with
requestID.

// cancel any request with given requestID
struct cancelRequest {
 int serverChannelID;
 int requestID;
};

Member Description
serverChannelID Server generated channel ID, same as in create channel response.
requestID Request ID, same as in request init message.

Cancel request.

 56

Control Messages

This section describes the message payloads for control messages. Each subsection
describes a single message command (pvAccessHeader.messageCommand).

Control messages have no payload and are used internally by the protocol, for instance to
handle byte order management and flow control.

The payload size field contains control message specific values.

Mark Total Byte Sent (0x00)

The payload size field holds the value of the total bytes sent. The client SHOULD
respond with an acknowledgment control message (0x01) as soon as possible.

Acknowledge Total Bytes Received (0x01)

The payload size field holds the acknowledge value of total bytes received. This must
match the previously received marked value as described above.

Set byte order (0x02)

The 7-th bit of a header flags field indicates the server's selected byte order for the
connection on which this message was received. Client MUST encode all the messages
sent via this connection using this byte order.
The client's decoding byte order depends on the payload size field value as follows:

Payload Size Field
Value Meaning

0x00000000 Client MUST decode all the messages received via this connection
using server's selected byte order.

0xFFFFFFFF Client MUST decode all the messages sent received this connection
as indicated by each message byte order flag.

Client Decoding

This MUST be the first message sent by a server when connection is established. For
connection-less protocols this message is not sent and byte order is determined per
message using its byte order flag.

NOTE: this message is byte order independent.

 57

Echo request (0x03)

Diagnostic/test echo message. The receiver should respond with an Echo response (0x04)
message with the same payload size field value.

Echo response (0x04)

Response to a echo request. The payload size field contains the same value as in the
request message.

 58

Future Protocol Changes/Updates

The following are known items that should be specified in future revisions:

• "one-phase" get/put/get-put/process
• immutable fields support, cache implemented for values (useful for enums)
• optimized packed Monitor responses
• bulk message transfer/trottle public API
• access rights
• etc.

 59

Missing Aspects

The following aspects are missing in the current revision of the specification and will be
specified in future revisions:

• structure/content of pvRequestIF/pvRequest fields
• offset and count fields of channelArray request should be of type 'size', however

'size' cannot be negative
• update Communication Example section to show messages

 60

Bibliography
bib:caref

EPICS R3.14 Channel Access Reference Manual, J.O. Hill, R. Lange, 2002,
http://www.aps.anl.gov/epics/base/R3-14/8-docs/CAref.html

bib:pvdatarefcpp
EPICS pvDataCPP [pvData C++ Programmers Reference Manual], M. Kraimer,
2011 under development, http://epics-
pvdata.sourceforge.net/docbuild/pvDataCPP/tip/documentation/pvDataCPP.html

bib:pvdatarefjava
EPICS pvDataJava [pvData Java Programmers Reference Manual], M. Kraimer,
2011 under development, http://epics-
pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html

bib:ieee754wiki
IEEE 754-2008, Wikipedia article, April 2012,
http://en.wikipedia.org/wiki/IEEE_754-1985

